三角形 - DGSO百科

三角形 百科内容来自于: 百度百科

平面上不共线的三点及其每两点连结的线段组成的封闭图形(包括它的内部区域)的图形 叫做三角形。组成三角形的每条线段叫做三角形的边。相邻两边的公共端点叫做三角形的顶点。相邻两边的夹角叫做三角形的内角,简称三角形的角。三角形一边的延长线与其邻边的夹角叫做三角形的外角。以A、B、C为顶点的三角形记作:△ABC,读作:三角形ABC。 平面上三条直线或球面上三条弧线所围成的图形,三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。

基本定义

在同一平面内由不在同一直线上的三条线段,首尾顺次相接所得到的几何图形叫做三角形(triangle),符号为△。三角形是几何图案的基本图形。

分类

三角形的打法()

ALT+41463——三角形(△)

按角分

判定法一:
判定法二:
  • 锐角三角形:三角形的三个内角中最大角小于90度。
  • 直角三角形:三角形的三个内角中最大角等于90度。
  • 钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
    其中锐角三角形和钝角三角形统称为斜三角形

判断方法

勾股定理延伸而来
若一个三角形的三边a,b,c (a>b≥c>0) 满足:

按边分

周长公式

若一个三角形的三边分别为a、b、c,则周长C=a+b+c

面积公式

三角形面积

三角形面积

(S=底面×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。
S=中位线×高; (其中,三个角为∠A,∠B,∠C,对边分别为a,b,c。参见三角函数
海伦公式),其中
(其中,R是外接圆半径)
S=(a+b+c)r/2 (其中,r是内切圆半径)
平面直角坐标系内,A(a,b),B(c,d),C(e,f)构成之三角形面积为 。 A,B,C三点最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但只要取绝对值就可以了,不会影响三角形面积的大小。
(正三角形面积公式,a是三角形的边长)
海伦公式(3)特殊情况:
S=Rr(sinA+sinB+sinC) (其中,R是外接圆半径;r是内切圆半径)

等腰直角三角形面积公式

s=(1/2)*底*高
  s=(1/2)*a*b*sinC (C为a,b的夹角)
  s=1/2的周长*内切圆半径
  s=(1/2)*底*高
  s=(1/2)*a*b*sinC
  c=a+b+c
  s=1/2ah(底*高/2)
  s=1/2absinC(两边与夹角正弦乘积的一半)
  s=1/2acsinB
  s=1/2bcsinA
  s=根号下:p(p-a)(p-b)(p-c) 其中p=1/2(a+b+c)(海伦公式)

重要线段

中线

连接三角形的一个顶点及其对边中点的线段叫做三角形的中线(median)。

从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高(altitude)。

角平分线

三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线(bisector of angle)。

中位线

三角形的三边中任意两边中点的连线。它平行于第三边且等于第三边的一半。

边角关系

三角函数给出了直角三角形中边和角的关系,可以用来解三角形
三角函数是数学中属于初等函数中的超越函数的一类函数。请参考相关词条。

性质

1.在平面上三角形的内角和等于180°(内角和定理);
2.在平面上三角形的外角和等于360° (外角和定理);
3.在平面上三角形的外角等于与其不相邻的两个内角之和。
推论:三角形的一个外角大于任何一个和它不相邻的内角。
4. 一个三角形的三个内角中最少有两个锐角
5.在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。

6.三角形两边之和大于第三边,两边之差小于第三边。
7.直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。
勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
8.直角三角形斜边的中线等于斜边的一半。
9.三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
10. 三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
11.等底同高的三角形面积相等。
12.底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
13.三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
14.等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。

其他

15.在同一个三角形内,大边对大角,大角对大边。
16.在斜△ABC中恒满足:tanA·tanB·tanC=tanA+tanB+tanC。
17.△ABC中恒有 。
18.三角形具有稳定性

全等

定义
两个能够完全重合的三角形称为全等三角形。
性质
全等三角形的对应角相等,对应边也相等。翻折,平移,旋转,多种变交叠加后仍全等。
判定
  1. 两个三角形对应的三条边相等,两个三角形全等,简称“边边边”或“SSS";
  2. 两个三角形对应的两边及其夹角相等,两个三角全等,简称“边角边”或“SAS”;
  3. 两个三角形对应的两角及其夹边相等,两个三角形全等,简称“角边角”或“ASA”;
  4. 两个三角形对应的两角及其一角的对边相等,两个三角形全等,简称“角角边”或“AAS”;
  5. 两个直角三角形对应的一条斜边和一条直角边相等,两个直角三角形全等,简称“直角边、斜边”或“HL”;
注意:证明三角形全等没有“SSA”或“边外边角”的方法,即两边与其中一边的对角相等,是无法证明这两个三角形全等的。但从其意义上来说,直角三角形的“HL”证明等同“SSA”。

相似

定义

对应边成比例的两个三角形叫做相似三角形

性质

  1. 相似三角形对应边成比例,对应角相等。
  2. 相似三角形对应边的比叫做相似比
  3. 相似三角形的周长比等于相似比,面积比等于相似比的平方。
  4. 相似三角形对应线段角平分线、中线、高)之比等于相似比。

判定

  1. 如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简称:三边对应成比例的两个三角形相似)。
  2. 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简称:两边对应成比例且其夹角相等的两三角形相似)。
  3. 如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似(简称:两角对应相等的两三角形相似)。
  4. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个三角形相似。

特殊点

五心、四圆、三点、一线:这些是三角形的全部特殊点,以及基于这些特殊点的相关几何图形。“五心”指重心、垂心、内心、外心和旁心;“四圆”为内切圆外接圆旁切圆和欧拉圆;“三点”是勒莫恩点、奈格尔点欧拉点;“一线”即欧拉线
五心的距离
  • OH²=9R²–(a²+b²+c²),
  • OG²=R²–(a²+b²+c²)/9,
  • OI²=R²–abc/(a+b+c)=R² – 2Rr
  • GH²=4OG²
  • GI²=(p²+5r²–16Rr)/9,
  • HI²=4R²-p²+3r²+4Rr=4R²+2r²-(a²+b²+c²)/2,
其中,R是外接圆半径;r是内切圆半径。

稳定性

证明

任取三角形两条边,则两条边的非公共端点被第三条边连接。
∴第三条边不可伸缩或弯折
∴两端点距离固定
∴这两条边的夹角固定
∵这两条边是任取的
∴三角形三个角都固定,进而将三角形固定
∴三角形有稳定性
任取n边形(n≥4)两条相邻边,则两条边的非公共端点被不止一条边连接
埃菲尔铁塔

埃菲尔铁塔

∴两端点距离不固定
∴这两边夹角不固定
∴n边形(n≥4)每个角都不固定
∴n边形(n≥4)没有稳定性
证毕

作用

三角形的稳定性使其不像四边形那样易于变形,有着稳固、坚定、耐压的特点。三角形结构的在工程上有
金字塔

金字塔

广泛的应用。许多建筑都是三角形的结构,如:埃菲尔铁塔,金字塔等等。

有关定理