黄土高原 - DGSO百科

黄土高原 百科内容来自于: 百度百科

黄土高原,是世界上黄土覆盖面积最大的高原,又称乌金高原。位于中国中部偏北。海拔多在1000米以上。北纬34°~40°,东经103°~114°。东西千余千米,南北750千米。包括太行山以西、青海省日月山以东,关中平原以北、长城以南广大地区。跨山西省、陕西省北部、甘肃省、青海省、宁夏回族自治区及河南省等省区,位于我国第二级阶梯,面积约62万平方千米,海拔1500到2000米。除少数石质山地外,高原上覆盖深厚的黄土层,黄土厚度在50~80米之间,最厚达150~180米。黄土高原矿产丰富,煤矿、铁矿、稀土矿储量大。

基本简介

黄土颗粒细,土质松软,含有丰富的矿物质养分,利于耕种,盆地河谷农垦历史悠久,是中国古代文化的摇篮。但由于缺乏植被保护,加以夏雨集中,且多暴雨,在长期流水侵蚀下地面被分割得非常破碎,形成沟壑交错其间的、峁、川。
气候较为干旱,降水集中,植被稀疏,平坦耕地不到十分之一,绝大部分耕地分布在10°∼45°的斜坡上。地块狭小分散,不利于水利化和机械化。
土流失严重。黄河每年经陕县下洩的泥沙约16亿吨,其中90%来自黄土高原,随泥沙流失的氮磷钾养分约3,000馀万吨,这也是导致黄河下游泥沙堆积,形成地上河的原因之一。综合治理黄土高原是中国改造自然工程中的重点项目,治理方针是以水土保持为中心,改土与治水相结合,治坡与治沟相结合,工程措施与生物措施相结合,实行农林牧综合发展,这种治理措施已取得了重大成绩。黄土高原矿产丰富,煤、石油、铝土储量巨大,是中国重要的能源、化工基地。

地理位置

黄土高原在中国北方地区与西北地区的交界处,它东起太行山,西至乌鞘岭,南连秦岭,北抵长城,主要包括山西陕西北部、以及甘肃、青海、宁夏、河南内蒙古等省46 个地(盟、州、市),282个县(旗、市、区),面积40万平方公里,水土流失面积45.4万平方千米(水蚀面积33.7平方千米、风蚀面积11.7 万平方千米),年均输入黄河泥沙16 亿吨,是我国乃至世界上水土流失最严重、生态环境最脆弱的地区。占世界黄土分布70%,为世界黄土面积覆盖最大的高原。黄土厚50—80米,气候较干旱降水集中,植被稀疏,水土流失严重。黄土高原矿产丰富,石油、铝土储量大。但由于植被稀疏,夏季降水集中且雨量大,流水冲蚀作用强,在流水侵蚀作用下地表支离破碎,形成沟壑交错其间。
地形差别分陇中高原、陕北高原山西高原豫西山地等区。
平均海拔1000~1500米,除少数石质山地外,高原上覆盖着深厚的黄土层,黄土厚度在50~80米之间。最厚达150~180米。年均气温6~14℃,年均降水量200~700毫米。从东南向西北,气候依次为暖温带半湿润气候、半干旱气候和干旱气候。植被依次出现森林草原、草原和风沙草原。土壤依次为褐土、垆土黄绵土和灰钙土。山地土壤植被地带性分布也十分明显。
黄土高原广布黄土,厚达50至80米,陇东、陕北厚达150米,最厚的地方达200米。由于历代战乱、盲目开荒放牧及乱砍滥伐导致高原的植被遭到严重的破坏,加之黄土的土质疏松,水土流失极为严重,形成“千沟万壑”的黄土地貌
平坦耕地一般位于沟谷或小型盆地,一般不到1/10,绝大部分耕地分布在10°~35°的斜坡上。地块狭小分散,不利於水利化和机械化。黄土高原水土流失严重。但是,黄土高原地区蕴藏著丰富的煤炭石油、天然气铝土矿等资源,是中国重要的能源和化工基地。
这些地区的岩石,白天受热膨胀,夜晚冷却收缩,逐渐被风化成大小不等的石块、沙子和粘土。同时这些地区,每逢西北风盛行的冬春季节,狂风骤起、飞沙走石,尘土蔽日。粗大的石块残留在原地成为“戈壁”,较细的沙 粒落在附近地区,聚成片片沙漠,细小的粉沙和粘土。根据黄土堆积环境的不同,可将我国黄士发育分为三个时期:早更新世,相当于第一次冰期,气候比新第三纪干寒,发生午城黄土堆积;中更新世,发生第二次冰期,气候进一步变干,堆积了离石黄土,范围广、土层厚;晚更新世第三次冰期,气候更加干寒,堆积了马兰黄土,厚度虽小,但分布范围更广,南方称下蜀黄土。进入全新世,气候转为暖湿,疏松的黄土层,经流水侵蚀,形成了沟壑纵横、梁、广布的破碎地表

历史演变

黄土形成

根据黄土堆积环境的不同,可将中国黄土发育分为三个时期:早更新世,相当于第一次冰期,气候比新第三纪干寒,发生午城黄土堆积;中更新世,发生第二次冰期,气候进一步变迁,堆积了离石黄土,范围广、土层厚;晚更新世第三次冰期,气候更加干寒,堆积了马兰黄土,厚度虽小,但分布范围更广,南方称下蜀黄土。进入全新世,气候转为暖湿,疏松的黄土层,经流水侵蚀,形成了沟壑广布的破碎地表
高原由西北向东南倾斜,海拔多在1200-2000。除许多石质山地外,大部分为厚层黄土覆盖。经流水长期强烈侵蚀,逐渐形成千沟万壑、地形支离破碎的特殊自然景观。 高原上主要山脉有太行山脉吕梁山和六盘山等,这些高脉把黄土高原分成三部分:山西高原、陕甘黄土高原、陇西高原。

古气候

黄土地层中反映古气候的标志概括起来有:古土壤、湖沼相沉积、河流相沉积、黄土的颜色变化、化学元素组分含量和孢粉组合等。
古土壤,它是在不同地质时期的地表,在当时的气候条件下,经过成壤作用形成的。因此古土壤的类型、成分结构等特征都带有形成时气候特征留在土壤中的痕迹,这些痕迹直接记录了当时气候冷暖干湿等变化。
湖相沉积,黄土中常常夹有湖相地层,这类地层主要出代早更新世早期和晚更新世的早期或晚期。这些湖沼相沉积物中碳质成分含量很高,富含生物碳孢粉,其所含铁元素多为还原状态,氧化程度很低,这些特征表明上述湖沼相堆积是在湿冷气候条件下形成的。
河流相沉积物,主要为粗砂、砾卵石等,一般属于早更新世中后期及中更新世早期。在晚更新世时,一些盆地和山前地带的黄土中夹有不同厚度的砂卵石层,这些粗岩相沉积物说明当时黄土堆积时,曾经有过较大的丰水期,因而河流发育,水文活动积极,反映了当时湿润的气候条件。
黄土形成于不同的气候条件下,因而有不同的外观颜色。综合黄土高原黄土剖面颜色在垂向上的变化,自下而上大体可以分为4个主要颜色段:第一段,浅红黄色段;第二段,棕黄色段;第三段,灰黄色段;第四段,褐黄色段。黄土颜色自下而上由红黄—棕黄—灰黄—褐黄的变化。
黄土中化学元素组分的迁移是与气候变化相关的。所谓元素的迁移,是指土壤中的化学元素的转移和再分配,使化学元素重新分散或集中的迁移。在不同的物理化学环境中,迁移的方式、强度和结果都不相同。
元素迁移除 。元素自身的物理化学性质如元素的组合及其结构等内因外,还有外界的物理化学环境,如温度、压力、氧化还原环境等外因。因此我们可以通过测定黄土史时期迁移最重要的外界因素,通过测定黄土层中元素迁移量的大小、形式及其组合关系等,反演其迁移的地质历史时期的古气候条件,以达到了解古气候环境波动的目的。植物分为孢子植物和种子植物两大类,孢子和花粉分别是这两类植物的繁殖器官。孢子和花粉当它们在植物的孢子囊和花药中成熟后,借助风、水或动物等动力的作用飞离植物母体,大部分落在土壤中,经过漫长的地质年代,孢子花粉也就变成了化石。孢粉学的任务之一就是用特定的方法把不同地层中的孢粉化石分离提取出来并鉴定其类型及组合,以此恢复古植被类型、群落,生长的古地理景观和古气候条件。
陕西省林业厅公布的数据可以看出陕北黄土高原“绿色版图”在迅速扩大。1999年以来,延安市退耕还林882万亩,新增水土流失治理面积12万平方公里,治理程度由20.7%提高到45.5%,林草覆盖率由42.9%提高到57.9%。

植被覆盖

植被面积不断增加
分析美国法国卫星遥感资料,发现1982~2007年陕北黄土高原丘陵沟壑区的植被覆盖总体上处于上升趋势,大致经历了三个阶段:
①1982~1998年植被覆盖在波动中缓慢增加;
②1999~2001年植被覆盖处于一个相对的低谷;
③2003~2007年植被覆盖快速增加。
近26年来绿色度上升了9.3%。2003~2007年植被覆盖快速增加,增幅在26年中达到最大,这表明1999年以来实施封山禁牧、退耕还林草工程建设成效显现。
陕北黄土高原丘陵沟壑区四季绿色度的变化趋势都为正值,秋季(9月~11月)绿色度增加最为显著,26年上升了18.1%;其次是春季(3月~5月),26年的绿色度增加了12.6%。其中10月份绿色度的上升趋势最显著,其次是5月份。
绿色度的大小可以反映植被覆盖度的高低,不同等级绿色度的面积占总面积的比例的变化就可以反映植被覆盖结构的动态变化。绿色度在0.1~0.3级别面积所占总面积的百分比从 1981~1985 年的5 年平均29.0%下降到2003 ~2007 年5 年平均2.4%;相反,绿色度在0.3~0.6级别上所占面积的百分比在波动中大幅度增加。说明高覆盖植被的面积在增加,低覆盖植被的面积在减少。
各县(区)平均绿色度都呈现增加趋势,但增加的显著性和幅度大不一样。区内西部植被覆盖增加的趋势极为显著,而东部具有增加趋势,但不显著。可见,生态建设发展还不平衡,应适当加强东部即黄河沿岸县的治理力度。
气候变化对植被的影响
1982~2007年陕北黄土高原丘陵沟壑区年平均温度呈极显著的上升趋势,平均每年增温0.059℃。春季绿色度与温度之间存在着明显的正相关关系,夏季绿色度与温度之间存在着显著的负相关关系。说明春季温度升高,植被开始生长时间提前,明显增加了植被覆盖;夏季温度上升加速了地表蒸发过程,潜在地加剧了地表水分的缺乏,由此造成土壤干土层的发育,对植被生长具有明显的抑制作用。春季温度有上升趋势,绿色度也呈现增加的趋势,5月份绿色度的增加的显著性达到年内的第一个高峰;夏季温度上升趋势比春季更加显著,相反绿色度呈现出降低趋势;秋季9月份温度变化为增加趋势,10月显现弱的降低趋势,而绿色度呈现增加趋势,并且增加的显著性在10月份达到最大。这是因为退耕还林(草)前的耕地多,10月份农作物都成熟收获了,绿色度很低,而10月份林草茂盛,绿色尚未褪去,自然绿色度就高了。
近26年来,陕北黄土高原丘陵沟壑区年降水具有减少的趋势;春季和夏季降水也有减少的趋势,而秋季和冬季的降水量有增多趋势。因此,为了保证退耕还林(草)生态建 设工程的顺利实施和持续稳定地发展,适时开展春季尤其是夏季的人工增雨作业显得非常重要。降雨量增多的秋季比降雨量减少的春夏季种草植树易见成效。
人类活动对植被的影响
1999年,陕北各地在全国率先组织实施了以退耕还林(草)为主的生态建设工程,实行封山禁牧,统筹解决农户的长远生计问题。到2007年底,仅延安市就完成国家计划内退耕还林(草)面积875.06万亩,分别占到全国 退耕还林(草)面积的2.4%和全省的三分之一;主要河流平均含沙量较1998年下降了8个百分点;水土流失综合治理程度由原来的20.7%提高到45%;农民人均纯收入由1999年 1381 元增加到2865 元。昔日光秃秃的黄土山已郁闭成林,美丽如画。“天蓝、山绿、水清、人富”的生态目标开始显现。这些退耕还林的初步成效,随着时间的推移,其推进人类生态文明的深远意义会远远超出人们的预料。专家们评价:这是农耕文明以来这片黄土地上自然界最大的变化。百姓们高兴地唱到:“山坡上栽树崖畔畔上青,羊羔羔养在家门中;草棵棵赛过粮苗苗,退耕带来好光景。

地壳运动

文物工作者和地质人员曾经对宁夏回族自治区泾源县彭阳县等地发现的古生物化石研究证实,约在6000万
黄土高原

黄土高原

年前,黄土高原全是湖水,近代,山峰则是当时湖水中的孤岛。
宁夏固原地区很早以前是一片海洋。在距今6000万年前,地壳发生剧烈断块式上升与下降,到了距今24万年前,六盘山、月亮山等发生剧烈的上升运动。此后,随着山区间歇式继续上升,广大的丘陵区均沉积了厚度不等的风成黄土,在盆地中心或山麓地带则有冲积的砾岩和粘土,大量的黄土堆积,覆盖了山坡丘陵,形成了现代黄土高原的地形地貌

环境变迁

新生代早期,全球性气候变暖,我国各地区包括黄土高原的早第三系地层多呈红或浅红色,说明当时气候比较炎热。早更新世早期,黄土高原内在一些第三纪末形成的古侵蚀或断陷盆地边缘和盆地内,形成很多河流及
大小不同的湖泊,其中堆积了厚大的湖相沉积。在早更新世末期,由于气候逐渐变得干旱起来,雨量减少使这些湖泊逐渐萎缩,乃至干涸消失,并演化成河流。中更新世开始时,由于新构造运动对环境的影响,黄土高原的气候变为温湿和干凉交替的波动。这一时期河流最为发育,河水流量也与气候变化相对应而呈增多或减少的变化规律。到晚更新世初期,干旱气候开始显增多或减少的变化规律。到晚更新世初期,干旱气候开始显著。到全新世,黄土高原则明显地被干旱少雨的气候所控制,北部向沙漠化方向演化。在整个第四纪时期内,黄土高原的古气候环境的主要变化时期是中更新世早期,中更新世晚期和晚更新世末期。
黄土高原环境的变迁,有其自然的因素,这与全球气候变化有关,但也有人的因素,如黄土高原森林的砍伐,草地的破坏,土地利用不合理造成的土壤侵蚀,导致高原自然环境恶化。

地理形态

黄土高原河流众多,沟壑纵横,沟壑面积约占总土地面积的50%。主要河流有黄河及其支流渭河泾河、洛河、延河、无定河窟野河等。河水主要来源于降水,降水分布的特点是南部多、北部少,山区多、平原谷地少。因此,径流的分布规律是自南向北减少,山区大于原区谷地。
黄土高原位于大陆腹地,气候较干旱,降水稀少,蒸发强烈,水源短缺。全区地表水资源105.56亿立方米,人均536立方米,亩均263立方米。泾阳、富平、蒲城一带亩均不足100立方米。由于季风气候的影响,降水的年变率大,年内分配不均。因此,地表径流的年际变化大,年径流变差系数cv值在0.4以上,径流的年内分配集中,汛期(7~10月)径流量占年径流量的60~70%以上,甚至集中于几场大暴雨中,形成丰水年雨涝洪灾,少水年干旱缺水。
黄土高原水土流失严重,河流含沙量很大。黄土丘陵沟壑区输沙模数达20000~30000吨/年·平方公里,窟野河下游最大年输沙模数在40000吨/平方千米以上,最大含沙量高达1700千克/立方米。
黄土高原地表水的天然水质是良好的,大部分地区属重碳酸盐水矿化度低,适宜于工农业用水及人畜饮用水。唯在定边西北部、芦河及大理河上游、洛河上游等地有小范围的氯化物水及硫酸盐水,矿化度大,不宜于灌溉饮用。
黄土高原地下水主要分布在高原北部边缘的风沙滩地区,地下水资源量为11.76亿立方米,可开采量6.43亿立方米。在广大的黄土区及丘陵山区地下水非常贫乏。
城市工业排放大量的污水废水农业大量施用化肥,地表水源及地下水源污染日趋严重。延河及渭河某些河段的水质变坏,生物绝迹,加剧了水资源供需矛盾。保护水源、保护环境已成为社会发展的重大课题。
黄土高原的地区属温带季风气候区的边缘,大陆性和季风不稳定性更加突出,全年总雨量少,65%的雨水集中在夏季,降水的强度大,往往一次暴雨量就占全年雨量的30%,甚至更多,是造成黄土高原水土流失的原因之一。高原日照充足,高原从西北向东南,年均温度在8至14℃,无霜期为120至200天,属暖温带
黄土高原的水系是以黄河为骨干,发源于黄土高原的河流约有200条(参看小流域),较大的河流有渭河、汾河、洮河祖厉河、清水河、北洛河、黄甫川、窟野河无定河等,那里的河流水量不丰,年径流量只有185亿立方米(黄河干流除外),河流受汛期影响较严重,洪峰急涨急落,汛期水量占全年水量的7%以上,高原浅层地下水贫乏,大部分地区地下水的埋藏很深,多在60~70米以下。

地貌

黄土是第四纪时期形成的土状堆积物,分布很广,从全球范围看,主要分布在中纬度干燥或半干燥的大陆性气候环境内。我国黄土集中分布在北纬34~40°,东经102~114°之间,即北起长城,南界秦岭,西从青海湖,东到太行山面积约达30万平方公里的范围内,地理上称为黄土高原。本区除了一些基岩裸露的山地外,黄土基本上构成连续的盖层,厚度达100~200m,形成非常特殊的地貌。甘肃西部、青海西北部及新疆等地前低山丘陵及一部分山地的山坡上,黄土呈片状分布,而在山麓洪积-冲积平原和古河谷阶地上,也断续分布着经过搬运的黄土状土层。东北松辽平原、辽西翼北山地、华北平原和山东低山丘陵等地亦分布有黄土和黄土状土层。上述地区黄土一般呈零星分布,厚度也不大,加上自然条件等因素,黄土地貌发育受到很大限制,形态不典型。
分布在黄土高原区的典型黄土地貌可分为两大类:谷间地地貌和沟谷地貌。黄土地貌总的特征是地面非常破碎,表现在沟谷密度(单位面积的沟谷总长度)和地面分割度(沟谷面积占流域面积的百分数)两项数值很高,例如晋西个别地区沟谷密度为8km/km2,地面分割度达43.70%。地势起伏频率大也是黄土地貌的一个特征,地面频繁的出现200~300m的起伏。上述两个特征是我国其它地区所罕见的。
黄土峁
黄土峁简称峁,是椭圆形或圆形的黄土丘陵。峁顶面积很小,呈明显的穹起。由中心向四周的斜度一般在3~10°。峁顶以下直到谷缘的峁坡,面积很大,坡度变化于 10~35°之间,为凸形斜坡。峁的外形呈馒头状。两峁之间有地势明显凹下的窄深分水鞍部,当地群众称为“墕”。黄土峁分布有的呈散列的,也有呈线状延伸的,后者称连续峁,它往往是黄土梁被横向沟谷分割发育成的。
滑坡
黄土谷坡物质在重力作用下的块体运动,是谷坡扩展的主要形式,其中,滑坡是常见的一种。黄土滑坡发生后,在谷坡上部遗留下圆弧形的黄土陡崖(滑坡壁)与坡脚的庞大滑坡体。 黄土高原沟壑区和丘陵沟壑区分布着许多微地貌,常见的有黄土墙、黄土柱、黄土桥等。
黄土坪
分布在黄土高原河流两侧的平坦阶地面或平台,称为黄土坪,简称坪。有些黄土坪即是黄土梁峁区河流的阶地,沿谷坡层层分布。另一些是由于现代侵蚀沟的发展使黄土墹遭到切割而留的局部条带状平坦地面。黄土地区的河流阶地,每一级平台的下方有明显的陡坡,平台面向河流轴部方向倾斜。
黄土陷穴
黄土陷穴是黄土区地表出露的一种圆形或椭圆形洼地,我国西北称为龙眼或灌眼,深度大的称为黄土井,分布很广。它是由地表水和地下水沿黄土垂直节理进行侵蚀,并把可溶性盐类带走,下部黄土层被水流蚀空,表层黄土发生坍陷和湿陷而形成的。黄土陷穴往往出现在水流容易汇集的谷间地边缘地带,谷坡坡折的上方和冲沟中跌水和沟头陡崖的上方,常呈串珠状分布。
黄土塬
黄土塬简称塬,是黄土高原谷间地地貌的一种类型,具体是指四周为沟谷蚕蚀的黄土高原。在我国西北,由于长期沟谷蚕蚀,面积较大的塬已保存不多。面积大、形态完整的塬,破碎塬是由塬四周沟谷源侵蚀分割塬而形成的,它基本上保留塬的主要特征:塬面平坦,塬边坡折明显。破碎塬面积明显地比塬小。
黄土墹
黄土墹简称墹或墹地,它是黄土覆盖古河谷,形成宽浅长条状的谷底平地,又与两侧谷坡相连,组合成宽线的凹地,宽度一般数百米至几公里,长度可达几十公里。多出现在现代河流向源侵蚀尚未到达的河源区,平面图形常呈树枝状。
黄土梁
黄土梁简称梁,是长条形的黄土丘陵。黄土高原地貌组合可分为两大类型:一类是高原沟壑区;一类是丘陵沟壑区。前者由黄土塬和沟谷组成,后者由梁、峁和沟谷组成。无论上述哪一个类型,梁是其中面积最大、分布最普遍的谷间地地貌。梁可分为三种:平顶梁、斜梁、起伏梁。分布在高原沟壑区的主要是平顶梁(简称平梁),分布在丘陵沟壑区的以斜梁和起伏梁为主。黄土谷间地地貌是由黄土堆积而形成的,它一方面受黄土堆积前古地貌形态的影响,另一方面,在黄土堆积后的沟谷发育过程中,也相继出现各种谷间地地貌。由于上述原因,谷间地地貌在地域分布上往往互相交错,在个体形态上也存在许多过渡形式,虽然各种形态的主要差别是客观存在的,但严格的界限还无法确定。

气候

黄土高原地区属(暖)温带(大陆性)季风气候,冬春季受极地干冷气团影响,寒冷干燥多风沙;夏秋季受西太平洋副热带高压印度洋低压影响,炎热多暴雨。多年平均降雨量为466毫米,总的趋势是从东南向西北递减,东南部600~700 毫米,中部300~400毫米,西北部100~200毫米。以200毫米和400毫米等年降雨量线为界,西北部为干旱区,中部为半干旱区,东南部为半湿润区。
中部半干旱区
包括黄土高原大部分地区,主要位于晋中、陕北、陇东和陇西南部等地区,年均温4℃~12℃,年降雨量4
黄土高原

黄土高原

00~600毫米,干燥指数1.5~2.0,夏季风渐弱,蒸发量远大于降水量。该区的范围与草原带大体一致。
东南部半湿润区
主要位于河南西部、陕西关中、甘肃东南部、山西南部,年均气温8~14℃,年降雨量600~800毫米,干燥指数1.0~1.5,夏季温暖,盛行东南风,雨热同季。该区的范围与落叶阔叶林带大体一致。
西北部干旱区
主要位于长城沿线以北,陕西定边——宁夏同心、海原以西。年均温2℃~8℃,年降雨量100~300毫米,干燥指数2.0~6.0。气温年较差、月较差、日较差均增大,大陆性气候特征显著。风沙活动频繁,风蚀沙化作用剧烈。该区的范围与荒漠草原带大体一致。
黄土高原地区降雨年际变化大,丰水年的降水量为枯水年的3~4倍;年内分布不均,汛期(6~9月)降水量占年降水量的70%左右,且以暴雨形式为主。
每年夏秋季节易发生大面积暴雨,24小时暴雨笼罩面积可达5~7万平方千米;。河口镇至龙门、泾洛渭汾河、伊洛沁河为三大暴雨中心。形成的暴雨有两大类,一类是在西风带内,受局部地形条件影响,形成强对流而导致的暴雨,范围小、历时短、强度大,如1981年6月20日陕西省渭南地区的暴雨强度达267毫米/60min。另一类是受西太平洋副高压的扰动而形成的暴雨,面积大、历时较长、强度更大,如1977年7、8月,在晋陕蒙接壤地区出现了历史罕见的大暴雨,笼罩面积达2.5万平方千米;,安塞(7月5日,225毫米)、子洲(7月27日,210毫米)、平遥(8月5日,365毫米),暴雨中心内蒙古乌审旗的木多才当(8月1日)10小时雨量高达1400毫米。

地质

地表
黄土高原地区大部分为黄土覆盖,是世界上黄土分布最集中、覆盖厚度最大的区域。该地区黄土平均厚度50~100米,洛川塬超过150米,董志塬最大厚度超过250米。黄土高原地区的黄土主要为风成黄土,粉粒占黄土总重量的50%,结构疏松、富含碳酸盐、孔隙度大、透水性强、遇水易崩解、抗冲抗蚀性弱。
该区主要的土壤类型有褐土黑垆土栗钙土棕钙土灰钙土灰漠土黄绵土风沙土等。根据黄土高原地区有关土壤有机质、全氮和有效磷含量分级组合研究成果,极低养分地区面积占21.1%,低养分地区面积占19.4%,中等养分地区面积占26.7%。
水系
黄土高原地区面积大于1000平方公里的直接入黄支流有48条,其中水土流失严重、对干流影响较大的支流有洮河、湟水、庄浪河、祖历河、清水河、浑河、杨家川、偏关河、皇甫川、清水川、县川河、孤山川、朱家川、岚漪河、蔚汾河、窟野河、秃尾河、佳芦河、湫水河、三川河、屈产河、无定河、清涧河、昕水河、延河、汾川河、仕望川、汾河、泾河、北洛河、渭河、伊洛河32条支流,以及内蒙“十大孔兑”。
泥沙
黄土高原地区的径流主要由暴雨洪水形成,区域差异明显。黄河兰州以上地区多湖泊、沼泽,降雨强度小、历时长、范围广,形成的洪水洪峰小,涨落平缓,含沙量小;兰州至河口镇区间两岸多为沙漠地带,无大的支流汇入,气候干旱,降雨量小,洪水过程更趋平缓;河口镇至花园口区间暴雨洪水频繁、洪峰高、含沙量大、历时短、陡涨陡落。该区间有三大暴雨中心,相应形成河口镇至龙门、龙门至三门峡、三门峡至花园口三大洪水来源区,常常形成大洪水和特大洪水,危害极大,如1958年7月17日由三花区间干支流洪水遭遇形成的特大洪水,花园口站实测洪峰流量22300立方米/秒;窟野河1959年实测洪峰流量达14000立方米/秒,最大含沙量达1700千克/立方米。
黄河泥沙有四个主要特点:(1)含沙量高、输沙量大。黄河三门峡站多年平均输沙量约16亿吨,多年平均含沙量35千克/立方米,实测最大含沙量911千克/立方米(1997年),均为大江大河之最。河龙区间的皇甫川、孤山川和窟野河,洪水期含沙量常常超过1000千克/立方米;,实测含沙量达1700千克/立方米(窟野河);(2)地区分布不均。黄河兰州以上面积占34%,来沙仅占9%;河口镇至三门峡区间面积占17%,来沙占90%。特别是7.86万平方千米;的多沙粗沙区,来沙占65.2%;(3)年内分配集中,年际变化大。黄河泥沙年内分配极不均匀,汛期6~9月沙量占全年的90%,尤其是7、8两个月来沙更为集中,占全年的71%。黄河沙量的年际变化不均,泥沙往往集中在几个大沙年份,三门峡站最大年输沙量39.1亿吨1993年),是最小年输沙量3.75亿吨(2000年)的10.4倍;(4)泥沙主要来源于沟道。据皇甫川、清涧河、洛河流域典型小流域研究结果,沟间地产沙占20%,沟谷地产沙占80%。

生态

黄土高原生态系统十分脆弱,主要表现在以下两个方面:
黄土高原

黄土高原

黄土高原抵御自然灾害的能力较低。黄土高原的地理位置比较特殊,即处于从平原向山地高原过渡、从沿海向内陆过渡、从湿润向干旱过渡、从森林向草原过渡、从农业向牧业过渡的地区,各种自然要素相互交错,自然环境条件不够稳定,表现为地址地震灾害、水旱灾害和气象灾害,以及水土流失、土壤侵蚀等自然灾害比较频繁和严重。而人类的不合理开发利用,如滥垦、滥牧、过樵、过牧,都会引起自然环境的强烈反应,使得自然灾害发生地频度增大。
黄土高原的环境遭到破坏后,恢复相当困难。据历史资料考证,黄土高原曾是塬面广阔,沟壑稀少,植被丰茂的地区。随着人口的增加,人类活动的加剧,环境渐渐恶化,如植被减少,气候变干,土壤遭到侵蚀。然而,要把环境恢复到原来状态,在现有的经济、技术条件下很难做到。

黄土成因

形成

黄土高原的形成和青藏高原的隆升,加快了岩石受侵蚀和风化的速度,在高原周围的低洼地区堆积了大量卵石、沙子和更细的颗粒。每当大风骤起,在西部地区便形成飞沙走石、尘土弥漫的景象。被卷起的沙和尘土依次沉降,颗粒细小的粉尘最后降落到黄土高原区域,形成了一条荒凉地带。

(印度板块论)

印度板块向北移动与亚欧板块碰撞之后,印度大陆的地壳插入亚洲大陆的地壳之下,
黄土高原

黄土高原

并把后者顶托起来。从而喜马拉雅地区的浅海消失了,喜马拉雅山开始形成并渐升渐高,青藏高原也被印度板块的挤压作用隆升起来。
然而东西走向的喜马拉雅山挡住了印度洋暖湿气团的向北移动,久而久之,中国的西北部地区越来越干旱,渐渐形成了大面积的沙漠和戈壁,这里就是堆积起了黄土高原的那些沙尘的发源地。体积巨大的青藏高原正好耸立在北半球的西风带中,240万年以来,它的高度不断增长着。青藏高原的宽度约占西风带的三分之一,把西风带的近地面层分为南北两支。南支沿喜马拉雅山南侧向东流动,北支从青藏高原的东北边缘开始向东流动,这支高空气流常年存在于3500—7000米的高空,成为搬运沙尘的主要动力。与此同时,由于青藏高原隆起,东亚季风也被加强了,从西北吹向东南的冬季风与西风急流一起,在中国北方制造了一个黄土高原。

(洪水论)

科学家认为,黄土中粗粉沙的含量由西北向东南减少,而黏土的含量由西北向东南增加,这种“阶梯式”的分布规律与地势相吻合(东南海拔较低,西北较高),更像是洪水造成的。

(风成论)

长期以来的观察研究认为,黄土高原是由有西北向东南的风造成的,风沙带来了黄土高原。但是,区区沙尘暴能形成如此巨大的一座高原,就算积起的黄沙不被吹散、冲走,沙尘暴所带来的黄沙也不足以形成如此宏伟的一座高原。

争议

关于黄土的来源,长期以来,中外学者有过不同的争论。其中,以“风成论”比较令人信服。认为黄土来自北部和西北部的甘肃、宁夏和蒙古高原以至中亚等广大干旱沙漠区。这些地区
黄土高原

黄土高原

的岩石。这些地区,粗大的石块残留在原地成为“戈壁”,较细的沙粒落在附近地区,聚成片片沙漠细小的粉沙和粘土,黄土高原
科学家发现许多现象是黄土风成学说无法解释的。譬如,黄土中粗粉沙含量由西北向东南递减,黏土的含量却从西北向东南递增,这种自西北向东南的有规律的排列呈叠瓦阶梯状的分布过渡,而不是平面模糊过渡。这种叠瓦阶梯状的分布过渡更像是洪水所造成的。

考证

为了解黄土高原的“变脸”过程,专家们特意到黄土高原西部甘肃静宁县、秦安县、定西市等地采集黄土高原6个典型地质剖面的黄土标本,从中获得了700余块孢粉样本和209块表土孢粉样本,这近千份孢粉样本大约记
黄土高原

黄土高原

录了公元前4.6万年至今黄土高原植被变迁过程。通过对碳14的测量,在6个典型剖面中共测得年代34个。经过分析,专家们发现,从黄土高原采集的20克样品中最多分离出孢粉颗粒达到1112粒左右,最少的则不足50粒,显示着4万多年来,环境和植被出现了巨大的变化过程。
从孢粉的分析来看,发现了松、云杉、冷杉、铁杉、菊科等数十种植物孢粉的记录,专家们认为黄土高原在最初的时候并不姓“黄”,在4.6万年的历史中,有一多半的时间,黄土高原是森林和草原的成分相互消长,在这段时间里,黄土高原经历过多次快速的“变脸”———历经过草原、森林草原、针叶林以及荒漠化草原和荒漠等多次转换。

生态资源

黄土高原拥有极为丰富的煤炭资源,其储量和产量均居全国第一。煤炭资源不仅量大质优,还有较好的开采条件。其中,可供露天开采的煤矿储量达200亿吨。全国探明储量的特大型煤田,约有一半分布在这里。
山西省是我国最大的煤炭基地。陕西榆林市以其丰富的能源矿产资源,被美誉为中国的“科威特”,是正在建设的国家能源重化工基地,最终实现科技融入资源型的中国“能源硅谷”。黄土高原地区地理位置适中,做为全国的能源基地,正源源不断地向全国提供煤炭和电力,人们形象地称它为全国的“锅炉房”。
但是,在矿藏量巨大的同时,植被量的日益减少已经成了黄土高原的一大灾害,截至2000年,黄土高原植被覆盖率仅为58%左右。

环境问题

水土流失

主要由暴流沟谷冲刷疏松黄土所致。黄土颗粒细小,质地疏松,具有直立性 制造窑洞所利用的性质)并含有碳酸钙,遇水容易溶解、崩塌。地面坡度较大,植被稀疏,夏季又多暴雨7、8、9三个月降水量之和占全年降水量的80%左右,造成奇峰、陡壁、溶洞、陷穴、天生桥等微地貌,更助长了沟壑扩展,加速水土流失。同时也与近代地壳上升有关,使得沟床不断下切和侧蚀,沟谷溯源侵蚀加剧,相应地谷坡又不断地扩展,于是沟间地日益破碎。除上述自然因素外,与人类活动,特别是植被的破坏、不合理的耕作制度、开矿等社会因素有密切关系。黄土高原是我国水土流失最为严重的地区。

滥伐滥垦

自秦汉以来黄土高原经历了三次滥伐滥垦高潮。

第一次是秦汉时期的大规模“屯垦”(边防军有组织大垦荒)和“移民实边”开垦。这次大“屯垦”使晋北陕北的森林遭到大规模破坏。
第二次是明王朝推行的大规模“屯垦”,使黄土高原北部的生态环境遭到空前浩劫。据考证,明初在黄土高原北部陕北(延安、绥德、榆林地区)和晋北大力推行“屯田”制,竟强行规定每位边防战士毁林开荒任务。从这里我们不难看出,明代推行“屯田”制对环境破坏之严重。
第三次大垦荒是清代,清代曾推行奖励垦荒制度,垦荒范畴自陕北、晋北而北移至内蒙古南部,黄土高原北部和鄂尔多斯高原数以百万亩计的草原被开垦为农田,使大面积的土地沙化,水土流失加剧。

导致后果——恶性循环

1、生态环境恶化→制约社会经济发展→贫困加剧→单纯追求多产粮食→毁林开荒→水土流失加重→生态环境恶化;
2、人口持续增长→人均耕地减少,燃料需求增加→破坏植被,开垦荒地→环境恶化,灾害频繁→农作物产量下降,再扩大荒地开垦→人口持续增长。

环境治理

中国成立后,对黄土高原的水土流失采取了一系列综合治理措施。
一、植被建设
1、植被分布的非地带性
黄土高原植被分布的地带性规律是毋庸置疑的,自南向北,自然植被呈森林向草原过渡的总体趋势。不同土质、地形部位和坡向的地块,土壤水分状况存在一定差异,适合不同植被群落的生长。但黄土高原的植被分布也存在以下非地带性特征,其植被分布的总体特征应为植被的地带性分布与非地带性分布两者的自然组合。
2、土质非地带性
在《黄土高原森林分布与黄土厚度的关系》一文中对此已进行了较详细的论述。现将主要观点简述如下:1)黄土颗粒组成细,孔隙度高,孔隙以细孔隙为主。在降水不丰沛的半湿润、半干旱区,降水入渗浅,地面蒸发耗水多。厚层黄土坡地土壤水分条件相对干旱,自然植被为草原。2)裂隙发育的岩层,孔隙度低,孔隙以大孔隙为主,降水入渗深,地面蒸发耗水少。在降水不丰沛的半干旱、半湿润区,裂隙发育的岩质坡地,土壤水分条件较湿润,自然植被为森林。3)薄层黄土坡地,由于下伏不透水岩层埋藏浅,地下水位较高,树木往往可以通过发达的根系吸取地下水,自然植被也为森林。
3、微地貌非地带性
黄土高原沟壑密集,地形切割深。由于地表径流和土壤重力自由水向下运移,塬面、墚、峁等正地形部位,土壤含水量较低,地下水埋藏深;沟谷及沟坡中下部等负地形部位,土壤含水量较高,地下水埋藏浅。在半干旱、半湿润的气候条件下,沟谷及沟坡中下部的土壤水分条件往往适合树木的生长,自然植被为森林,墚峁、塬面及沟坡中上部的土壤水分条件往往适合草灌的生长,自然植被为草原。沟坡森林植被的分布高度,自南向北呈降低的趋势。
4、坡向非地带性
阳坡坡地的地面蒸发耗水大于阴坡,同一区域阳坡的土壤水分条件往往较阴坡干旱。因此,阳坡的植被群落往往较阴坡更耐干旱。沟坡的森林分布上限,阴坡高于阳坡。
5、黄土高原土壤水分的可持续利用
黄土高原50年来的人工林草建设,没有遵循土壤水分地可持续利用原则,片面追求人工林草的高生长量、高经济效益,结果多以失败告终。如20世纪50-70年代的“山顶戴帽子”,在墚峁顶上造林,树木初期生长尚好,但5至10年后多为小老头树或者死亡。20世纪80年代初期,飞播沙打旺,人工种植红豆草,沙打旺、红豆草3年内长势喜人,5年后逐渐衰亡。中科院水土保持研究所等单位对人工林草地的土壤水分进行了深入的研究,发现人工林草地出现了明显的土壤干层,土壤干化现象严重。洛川塬20世纪80年代中期以来大面积发展的苹果园,也已普遍出现土壤干层。
黄土是库容巨大的土壤水库,但降水补给不充分,地面蒸发耗水强烈。土壤水库储存的巨量土壤水是地质历史时期长期积存的。研究表明,黄土土壤水活跃层深度一般在2米左右,2米以下土层的土壤水一旦耗用,很
黄土高原

黄土高原

难补充,补充需要很长的时间。这就意味着,2米以下的土壤水是不可动用的净储量,可望而不可及。高生长量的人工牧草和木本植物,根系发达,耗水量大,浅层土壤水分不能满足植物生长需要时,不得不通过发达的根系耗用深层土壤水,一旦根系分布深度内的土壤水被大量耗用,形成土壤干层,植物势必衰亡。追求高生长量的人工林草建设,不可避免地要掠夺性利用土壤水资源,不可能营造出经得起时间考验的秀美山川,只能给后代留下干涸的土壤水库。黄土高原的自然植被具有明显的地带性与非地带性特征。史前时期,黄土高原在土石山区和黄土谷地发育繁茂的森林,而在黄土高原墚峁和塬面上以草原植被为主。根据土石山区和黄土谷地的面积估算,史前时期黄土高原的森林覆盖率不超过50%。黄土高原的植被建设必须按照植被的自然分布规律,遵循土壤水分的可持续利用原则,因地制宜,科学规划。在自然植被为森林的区域,恢复森林植被,在草原区域恢复草原植被。
自然修复恢复的植被,最适应当地的自然环境,形成的群落最为稳定。吴旗县的封禁实践和中科院水土保持 研究所的定位观测表明,完全可以依靠自然修复恢复黄土高原的植被,时间也无须很长,3至5年就可以形成较好的植被覆盖。鉴于黄土高原植被建设重点的高位黄土坡地,尚无经得起时间考验的稳定人工林草建设的实例及相关营造技术,黄土高原的植被建设现阶段应以自然修复为主,辅以土壤水分条件较好地段的人工造林。
二、退耕还林
在党的正确领导下黄土高原由黄变绿
新中国成立后,国家一直坚持不懈在陕北黄土高原开展生态治理,特别是退耕还林政策的实施,使陕北黄土高原生态状况实现了由“整体恶化、局部好转”向“整体好转、局部良性循环”的历史性逆转。
蒙蒙细雨中,层叠起伏的黄土高坡云雾缭绕,满目的林草仿佛为大地铺上了绿毯。全国退耕还林工程建设10周年总结大会8日在吴起县召开,国家林业局副局长祝列克这样评价:“退耕还林使吴起走上了一条人与自然和谐共存、社会经济可持续发展的道路,为全国退耕还林工程建设树立了成功的典范。”
地处黄土高原的吴起县,是1935年中央红军经过二万五千里长征与陕北红军胜利会师的地方。记者初次来到这里采访时,只能在个别流域看到少许绿色,多数山山峁峁因为开垦种粮而满眼土黄。
黄土高原

黄土高原

为了走出“越垦越穷、越穷越垦”的恶性循环,从1998年起,吴起县启动了以封禁造林为主题的绿色革命,当年就在留够口粮田的前提下,将155.5万亩坡耕地一次性全部退耕。
以前尽管家里有60多亩耕地,吴起县吴仓堡乡周关村村民贺建清一家7口人的日子并不好过,靠天吃饭粮食收成没保障,因为学生上学和家人看病还欠了几万元的债务。自从家里50亩退耕地列入国家补助,加上种植沙棘果的收入,贺建清一家年收入稳定在了2万元以上。
吴起县委书记冯振东说,国家退耕还林政策完全落实后,吴起县10多万农民可享受粮食补助、管护费、种苗费折合12.9亿元,农民户均领取补助5.6万元,人均领取12230.6元,这有力地调动了他们造林绿化的积极性。
没有产业,生态难保,没有产业,农民难富。为此,在退耕还林过程中,吴起县特别注重把生态效益与经济效益、改善生态环境与发展地方经济紧密结合起来,大力推动舍饲养羊和林果业、草畜业、棚栽业、农副产品加工业和劳务输出等农村后续产业的发展,使农民收入稳步提高。2008年全县农民人均纯收入达到3658元,较1997年的887元净增2771元。
吴起县薛岔乡南沟村党支部书记闫志雄说:“10年来我们这里有两大变化,一是环境变了。原来到处是黄山,现在山清水秀;二是我们的收入提高了。原来我们村的人均收入只有600多元,去年人均收入已经达到4400多元了,一部分群众还有了私家车。”
1999年以来,在国家退耕还林政策扶持下,吴起县累计完成造林种草面积240多万亩,林草覆盖率由1997年的19.2%提高到62.9%,成为全国退耕还林启动最早、面积最大、成效最好、群众得到实惠最多的县。在最新的EOS卫星遥感图片上,一片浓绿的颜色清晰地勾勒出了吴起的地貌轮廓。
吴起县委书记冯振东说:“与10年前相比,吴起县的灾害性天气明显减少,多年罕见的飞禽走兽重新出现。”
在陕西延安市柳林镇后孔家沟村48岁的农民刘治平眼中,黄土与绿色,饥饿与富裕,这两组鲜明的对比最能体现家乡的巨变。2008年,这个只有53户人家的小山村,人均种植苹果3.4亩,人均纯收入1.5万元。
但在退耕还林前,后孔家沟村山上无树、坡上少草,全村人守着荒凉的群山受穷。刘治平说,站在高处看,我们村就是花果园,春天满山花,秋季满树果。

水土工程

修建水库(调节、防洪、发电)、打坝淤地(在沟里建坝拦蓄泥沙,防止泥沙流入下游河中,把上泥沙淤积成“坝地”,土层深厚,土质良好,可用于种草种树,极少数用于种杂粮。当地有谚语:宁种一亩沟,不种十亩坡。打坝如修仓,拦泥如积粮。村有百亩坝,再旱也不怕。沟里筑道墙,拦泥又收粮)。
水保试验站
经过30多年的建设,位于黄土高原的安塞水土保持综合试验站已成为世界上最大的水保试验站。
安塞水土保持综合试验站位于陕西省延安市的安塞县,始建于1973年,是科技部国家重点野外台站、中国科学院生态系统研究网点重点站。
这个试验站已建成山地、川地试验场,其中包括农田水分平衡试验场、养分循环试验场、土壤侵蚀试验场等160个小区以及先进的山地自动气象站和农林旱地微气候观测站,占地75万平方米,成为世界上面积和规模最大的水土保持试验站。
安塞水土保持综合试验站,重点研究领域是水土流失规律及其对生态环境的影响、黄土丘陵区生态环境特征及演变规律、水土保持型生态农业系统结构功能及调控原理、流域健康诊断与管理理论及方法等多个方面。同时它还肩负研究合理开发和利用农业资源、改善生态环境、恢复和重建退化生态系统、为黄土高原水土保持与生态环境建设提供科学依据和途径等任务。
这个试验站利用身处黄土高原的特有条件,30多年来先后承担了国家和陕西省关于黄土高原水土流失综合治理与农业发展的科技攻关课题和中国科学院重大研究项目31项,获得国家科技进步一等奖、二等奖以及中国科学院和陕西省的各类奖项18项。这里还吸引了来自俄罗斯日本美国澳大利亚等多个国家的同行开展合作研究。

综合治理

小流域综合治理(以上措施之综合,外加农业技术和生物技术。农业技术:节水技术和提高单产量的技术。重点在保持水土)。黄土高原发生了可喜的变化。
黄土高原

黄土高原

加大“三北”防护林的建设,加大植被的覆盖面积和覆盖率,改善天然草场的植被,压缩农业用地。尤其对于这个土质比较疏松的黄土高原来说,森林覆盖率一定要高于全国的平均水平22%,只有这样才能比较有效的防止水土流失。
黄土高原水土流失严重的面积约27万平方公里,有11万平方公里特严重面积。大部分地区的侵蚀模数在4000吨/平方公里,最严重的地区达3.57万吨/平方公里。水土流失使黄土高原丧失熟化土层,使当地土层的蓄水保湿能力降低,丧失耕种能力。水土流失还导致河道淤塞,水库淤积、渠道不畅等后果,治理困难。